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ABSTRACT 
Gravity assist involves the use of the gravita- 

tional attraction of an intermediate planet to in- 
crease the orbit energy of a spacecraft, enabling 
it to attain the target planet. The primary diffi- 
culty in designing a gravity assist trajectory is the 
determination of the encounter times of the launch 
planet, intermediate planet and target planet. 
Once these times are determined, it is a relatively 
simple procedure to use Lambert’s theorem and nu- 
merical integration to complete the detailed design. 
In this paper, a procedure is described for finding 
these encounter times using Lambert’s theorem and 
a new criterion based on Tisserand’s criterion to 
identify pairs of transfer orbits between the launch 
planet and intermediate planet and between the in- 
termediate planet and target planet. 

INTRODUCTION 
Gravity assist trajectories are an important 

class of trajectories that have been used by Voy- 
ager, Galileo, Cassini, and other missions to tour 
the solar system. The design of interplanetary tra- 
jectories involves finding an orbit that will trans- 
fer a spacecraft from the vicinity of one planet to 
the vicinity of another planet. The accessibility of 
a target planet, particularly those beyond the or- 
bit of Jupiter, depends on finding a transfer orbit 
with energy relative to the initial starting point, 
normally the Earth, within the capability of the 
launch vehicle. The use of gravity assist to increase 
the transfer orbit energy has opened up the explo- 
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ration of planets that otherwise would not be ac- 
cessible with current launch vehicle capability. 

Most interplanetary and planetary orbiter mis- 
sion trajectories since the beginning of the space 
age have used Keplerian two-body motion in their 
design. Missions requiring three-body transfers are 
generally limited to those involving the satellites 
of the major planets, for example missions to La- 
grange points in the Earth-Sun system, or the Voy- 
ager mission to the outer planets. Even though 
gravity assist trajectories can be designed by re- 
peated application of two-body theory, they are in- 
cluded in the three-body classification because the 
gravity assist requires a simultaneous exchange of 
energy among three bodies. The three-body th& 
ory employed for the design of gravity assist tra- 
jectories involves the use either of vectors defin- 
ing the approach and departure hyperbolic asymp- 
totes with respect to the gravity assist planet, or of 
Tisserand’s criterion, which pertains to the inter- 
planetary Keplerian orbits connecting the launch, 
gravity assist and target planets. It will be shown 
that while both design techniques follow from the 
Jacobi integral, they yield significantly different re- 
sults, since they represent different approximations 
of the true equations of motion. In this paper, a 
criterion is developed that combines both of these 
design techniques. 

JACOB1 INTEGRAL 
An important integral describing constraints 

on energy transfer for the restricted three body 
problem was discovered by Carl Gustav Jacob Ja- 
cobi in the Nineteenth century. A point mass mov- 
ing in the vicinity of two massive bodies in circular 
orbits about their barycenter will conserve a cer- 
tain function of the state and gravitational param- 
eters of the massive bodies referred to as Jacobi’s 
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integral. The constant of integration is called Ja- 
cobi's constant. The equations of motion for two 
massive bodies and a point mass are given by, 

21 - x 2 2  - x 
X = GM1- i- GM2- 

rf 4 

The two massive bodies rotate around the barycen- 
ter and the rotation rate is simply 2 7 ~  divided by 
the period of the orbit, 

w =  \JGM1+GM2 P3 

where p is the distance separating the two massive 
bodies. The geometry is illustrated on Figure 1. 

r Y  

Figure 1 Restricted Two Body Geometry 

The primed coordinate system (XI, y', 2') in Figure 
1 represents a rotating coordinate system in which 
the two massive bodies lie on the x' axis, with 

x = x'coswt - y'sinwt 

y = x' sin wt + y' cos wt 

z = z' (3) 
After differentiating Equations 3 twice, substitut- 
ing into Equations 1 and eliminating the sine and 
cosine terms, the following result is obtained as 
shown in Reference 1. 

Equation 4 may be put into a form that can be in- 
tegrated by defining the function 

and substituting into Equations 4. 

Adding Equations 6 ,  

The integral of Equation 7 given below is called the 
Jacobi integral. 

or 

. 2  .2  .2  
2' +y '  +z' =2u-c  

. 2  - 2  . 2  
2' + y' + 2' = W2Xl2 + w2yt2+ 

(9) 
GM1 GM2 
r1 r 2  

2- + 2- -c 
where C is the constant of integration. 

TISSERAND'S CRITERION 
Francois Felix Tisserand was a nineteenth cen- 

tury astronomer who discovered a unique applica- 
tion of Jacobi's integral to identify comets. In the 
restricted three body problem, a certain function of 
the orbit elements before and after a planetary en- 
counter is conserved. If this function is computed 
for two comet observations on different orbits and 
the results are the same, one may conclude that the 
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observations are of the same comet and the comet 
has encountered a planet between the observations. 
This may be confirmed by propagating the orbits 
forward or backward in time to see if they encoun- 
tered a planet. 

In the application of Tisserand’s criterion to 
gravity assist trajectory design, the procedure is 
reversed. Transfer trajectories from the launch 
planet to the intermediate planet and from the in- 
termediate planet to the target planet are com- 
puted using Lambert’s theorem. These trajecto- 
ries are matched based on Tisserand’s criterion to 
identify viable launch and encounter opportunities. 
Tisserand’s criterion follows directly from Jacobi’s 
integral. Using Equations 3, the Jacobi integral is 
transformed back to inertial coordinates (the un- 
primed coordinates on Figure 1). 

x2 + 7j2 + i2 = 2w(xjr - yk)+ 

GM1 GM2 2- +2--c 
r1 r2 

For GMl much greater than GM2, the z component 
of the angular momentum vector is given by, 

xy - yx = h, = hcosi (11) 

h = dGM1 a(1- e 2 )  

and from the vis viva integral the energy is given 
by, 

(12) 
2 1  

k2 + y 2 +  t2  = GMi(- - -) 
r1 a 

Substituting Equations 11 and 12 into Equation 10 
gives 

2 1  
r1 a 

GM1(- - -) - 2wdGM1 a(1- e2)cosi = 

GMi GM2 2- +2--c 
r1 r2 

Substituting Equation 2 for w and for small GM2 
compared with GM1, 

a( 1 - e2) 
C x -  cosi (14) 

GM1 a + 2GMl\/l P3 

14 is multiplied through by p and divided by GM1, 
Tisserand’s criterion in dimensionless coordinates 
becomes 

If the first observation of a spacecraft or comet 
has orbit elements al, el and il and the second ob- 
servation after a planetary encounter has orbit el- 
ements a2, e2 and i z ,  then 

GRAVITY ASSIST VECTOR DIAGRAM 

Figure 2 shows the encounter geometry in the 
vicinity of the intermediate planet that supplies 
the gravity assist energy boost to the spacecraft. 
The incoming velocity of the spacecraft (V1)is sub- 
tracted from the planet velocity (V,) to obtain the 
planet relative approach velocity (vi) as shown in 
the upper vector diagram on Figure 2. The lower 
vector diagram shows the same relationship for the 
outgoing velocity vectors. If the incoming and out- 
going velocities are computed far from the planet 
yet close enough to the planet that the heliocentric 
energy may be assumed constant, the velocities 

P 

In the literature, Tisserand’s criterion is often de- 
veloped in dimensionless coordinates and the Ja- 
cobi constant modified to remove constant param- 
eters. If a is divided by p to define ii and Equation 

Figure 2 Gravity Assist Vector Diagram 
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vi and v, are approximately the v, vectors as- 
sociated with the two-body hyperbola about the 
planet. In the limit of two-body motion assumed 
for patched conic trajectories, vi and v, are equal 
in magnitude. Since the planet velocity is also as- 
sumed to be constant during the relatively short 
time interval of the planet encounter, the outgoing 
vector diagram may be superimposed on the incom- 
ing vector diagram as shown on Figure 2. The out- 
going heliocentric spacecraft velocity magnitude is 
greater than the incoming velocity magnitude and 
the spacecraft has acquired additional orbit energy 

’ relative to the Sun. The energy acquired by the 
spacecraft comes from the Sun and the planet. 

Consider the triangle formed by the spacecraft 
and planet heliocentric velocity vectors and the in- 
coming velocity vector. From the law of cosines, 

The orbit of the planet about the Sun may be 
approximated by a circle with velocity magnitude 
given by, 

The heliocentric orbit of the spacecraft may be re- 
garded as a two-body conic. The velocity magni- 
tude is given by 

In the plane of the orbit, the angle A is simply the 
flight path angle (7). For the general case, the an- 
gle A is a function of y and the inclination of the 
spacecraft orbit plane with respect to the planet 
orbit plane il and 

Making these substitutions into Equation 15 gives, 

2GM, GM, GM, 
P a1 P 

.+--- +-- 

C O S i l  (21) 

The energy of the spacecraft relative to the planet, 
the potential energy of the spacecraft relative to 
the Sun and the velocity of the planet relative to 
the sun may be regarded as constant. Collecting 
these “constant” terms on the left side gives, 

Vi2 
3GM, 

P 
C=--  

N- 
N al(l - ea C O S i l  (22) 

P3 
GMs +2GMs { 
a1 

Equation 22 provides an interesting insight into 
the geometrical meaning of Jacobi’s constant in the 
limit where one of the gravitating bodies is much 
more massive than the other. The terms in the 
Jacobi integral are related to the velocity vector 
diagram of the participating bodies and the rela- 
tionship to energy conservation is incidental. 

CASSINI TRAJECTORY DESIGN 

The Cassini mission to Saturn provides an ex- 
ample of the application of Tisserand’s criterion to 
the design of a gravity assist trajectory. The seg- 
ments of the Cassini trajectory that are of interest 
are from Earth to Jupiter and from Jupiter to Sat- 
urn. For the purpose of this analysis, the encounter 
time and initial conditions at Earth relating to en- 
ergy are given. 

The first step is to determine the encounter 
times at Jupiter and Saturn. An initial guess of 
the encounter times of Jupiter and Saturn is made 
based on the approximate flight times associated 
with a Hohmann transfer. Point to point conic so- 
lutions for the trajectory segments from Earth to 
Jupiter and from Jupiter to Saturn are computed 
using the solution of Lambert’s theorem discovered 
by Lagrange. A point to point conic solution as- 
sumes zero mass for the planets and only the grav- 
ity of the sun is included. The solution of Lam- 
bert’s theorem gives the two-body conic connect- 
ing two position vectors where the flight time is 
known. The two position vectors are obtained from 
the planetary ephemerides and the conic trajectory 
is computed from planet center to planet center as 
shown on Figure 3. 

The next step is to compute the velocity vec- 
tors relative to Jupiter, one for the incoming tra- 
jectory segment (vi) and one for the outgoing tra- 
jectory (v,). If the Jacobi constants for the two 
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Figure 3 Earth-Jupiter-Saturn Encounter 

trajectory segments do not match, then the follow- 
ing procedure can be used to find potentially viable 
encounter time solutions. The encounter time of 
Jupiter is fixed and the encounter times of Earth 

and Saturn are permitted to vary over a suitable 
range of times. For each pair of Earth-Jupiter en- 
counter times and Jupiter-Saturn encounter times, 
a Lambert solution is computed and the Jacobi con- 
stant is computed from the orbit elements. The 
Jacobi constants for the two interplanetary trajec- 
tory legs are matched and the results cross plot- 
ted on Figure 4. Several approximations may be 
used for computing the Jacobi constant. Results 
for Tisserand's criterion and the Jupiter energy cri- 
terion are shown on Figure 4 as dashed lines. The 
Jupiter energy criterion (Equation 22) is equiva- 
lent to matching the incoming and outgoing veloc- 
ity magnitudes relative to Jupiter. For this paper, 
a criterion is used that matches the average of Tis- 
serand's criterion and the Jupiter energy criterion 
and is shown on Figure 4 as the solid line. The 
equation for this papers criterion, after simplifica- 
tion to remove constant parameters, is given by, 

Jupiter encounter 
Dec 30,2000 i 

i 
2003 I I I l 4 . 8  

... "...I....."._ ...... .".""..., 

, Tisscrand locuz 

*.A \ _ ..........._..._.... .. '. 

June 1 Jun 29 Jul27 Aug 24 Sep 21 

Fhth Encounter Date - 1999 

Figure 4 Earth-Jupiter-Saturn Loci 
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For a given pair of Earth launch and Saturn en- 
counter times indicated on Figure 4, the approach 
and departure velocity vectors at Jupiter are ob- 
tained and the hyperbolic conic relative to Jupiter 
is computed. A preliminary assessment of the vi- 
ability of the Jupiter centered hyperbola is per- 
formed. A trajectory that intersected the surface of 
Jupiter, for example, or hits one of Jupiter's satel- 
lites would not be viable. Next, the encounter con- 
ditions at Earth and Saturn are examined for vi- 
ability. If the energy at Earth or Saturn is unac- 
ceptable, the trajectory is not viable. If a viable 
trajectory is not found for all the launch date en- 
counter date pairs indicated by Figure 4, the above 
procedure is repeated for another Jupiter encounter 
time. 

Once a viable set of encounter times has been 
determined, a patched conic trajectory is designed 
that connects Earth Jupiter and Saturn. 

Encounter hyperbola 
Saturn centerad 

" t Point 
sun I I 

J Interplanetary Leg 2 

Patch mint 3 Jupiter ., 

" u n t o =  hypsrbola 
(Jupiter centered) 

Interplanetary Leg 1 -w atch Point 1 

Blmtmter hyperhola 
(Earth centersd) 

Figure 5 Earth-Jupiter-Saturn Encounter 
The procedure involves computing the approach 
and departure velocity vectors at the patch points 
shown on Figure 5 from the point to point conic so- 
lution. The two-body hyperbolic trajectory is then 
computed with respect to each of the participating 
planets. For Earth and Saturn, the departure and 
approach target plane positions are given. A new 
set of patch point positions relative to the Sun are 
computed. The states relative to Earth, Jupiter 
and Saturn are added to the respective planetary 

ephemerides at the appropriate times. The patch 
point times are selected such that hte spacecraft 
position is near the sphere-of-influence of the plan- 
ets. The planetary ephemerides may be computed 
from two-body orbit elements with respect to the 
Sun. This procedure is repeated several times for 
the new patch points until a ballistic trajectory is 
obtained from Earth to Saturn. It will be neces- 
sary to allow the Saturn encounter time to vary a 
small amount from the point to point solution. The 
results, shown on Figure 4 for three launch dates, 
compare favorably with the point to point solutions 
from this papers criterion. Also, the Cassini design 
point, obtained by numerical integration, is shown 
on Figure 4 for comparison. 

The patched conic solution is used as a start- 
ing point for targeting an integrated trajectory. A 
comparison of the Cassini integrated trajectory and 
the patched conic solution is shown on Figure 6 .  
State vectors are computed from the patched conic 
trajectory and differenced with state vectors ob- 
tained from the integrated Cassini ephemeris. The 
magnitude of the position difference is plotted as a 
function of time and the heliocentric range of the 
spacecraft is also plotted for comparison. The max- 
imum error is less than one percent of the heliocen- 
tric range. Since the period of the Saturn orbit is 
29 years, an error of several months in the predicted 
encounter time at Saturn from the point to point 
conic solutions should be expected. This error in 
computing the encounter times is exacerbated by 
accelerations from the third body that has been ig- 
nored for the two-body computations. However, 
a design error of only one percent enables a fairly 
accurate assessment of mission design constraints 
from the conic solution. 
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Figure 6 Cassini Conic Design Error 
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